A Fully Unsupervised Texture Segmentation Algorithm
نویسندگان
چکیده
This paper presents a fully unsupervised texture segmentation algorithm by using a modified discrete wavelet frames decomposition and a mean shift algorithm. By fully unsupervised, we mean the algorithm does not require any knowledge of the type of texture present nor the number of textures in the image to be segmented. The basic idea of the proposed method is to use the modified discrete wavelet frames to extract useful information from the image. Then, starting from the lowest level, the mean shift algorithm is used together with the fuzzy c-means clustering to divide the data into an appropriate number of clusters. The data clustering process is then refined at every level by taking into account the data at that particular level. The final crispy segmentation is obtained at the root level. This approach is applied to segment a variety of composite texture images into homogeneous texture areas and very good segmentation results are reported.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Natural Image Segmentation Using Mean Histogram Features
A new histogram feature based natural image segmentation algorithm has been proposed. The proposed scheme uses histogram based new color texture extraction method which inherently combines color texture features rather then explicitly extracting it. A non parametric Bayesean clustering is employed to make the segmentation framework fully unsupervised where no a priori knowledge about the number...
متن کاملK-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation
The K-means Iterative Fisher (KIF) algorithm is a robust, unsupervised clustering algorithm applied here to the problem of image texture segmentation. The KIF algorithm involves two steps. First, K-means is applied. Second, the K-means class assignments are used to estimate parameters required for a Fisher linear discriminant (FLD). The FLD is applied iteratively to improve the solution. This c...
متن کاملUnsupervised Color Texture Feature Extraction and Selection for Soccer Image Segmentation
In this paper, we describe a new approach for color texture feature extraction and selection. We define color texture features as texture features which are computed by taking into account the color components of the pixels. We determine the most discriminating color texture features among a multidimensional set of color texture features by means of an iterative feature selection procedure asso...
متن کامل